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Abstract— In this paper we revisit the problem of computing
controlled invariant sets for controllable discrete-time linear
systems. We propose a novel algorithm that does not rely on
iterative computations. Instead, controlled invariant sets are
computed in two moves: 1) we lift the problem to a higher
dimensional space where a controlled invariant set is computed
in closed-form; 2) we project the resulting set back to the
original domain to obtain the desired controlled invariant set.
One of the advantages of the proposed method is the ability to
handle larger systems.

I. INTRODUCTION

A controlled invariant set for a control system is, in-
tuitively, a set with the following property: any trajectory
starting in this set can be forced to remain inside it by a
suitable choice of inputs. Such sets are useful since they
can express “safety” properties in the sense that staying
always within these sets ensures that something bad never
happens. Controlled invariant sets play an important role in
several control design problems, e.g., they are used as safe
sets in constrained control, and they guarantee feasibility of
optimization problems arising in model predictive control
[14]. Moreover, their computation is essential to solve safety
problems: if a trajectory is to remain forever in a set of safe
states, then it must start in a controlled invariant set within
that set.

Invariant sets for control systems have a long history in
control; beginning with the pioneering work of [1], [2] on
their computation, many other contributions followed and are
documented in [3], [4], and more recently with their central
role in the synthesis of correct-by-design systems [18], [20],
[23].

Subsequently a substantial effort has been devoted to com-
puting controlled invariant sets for continuous-time, discrete-
time and hybrid systems. Many well-known approaches are
based on the famous iterative procedure [1], [2], [7], see
Section 2 for details. That procedure is proven to yield the
maximal controlled invariant set upon termination. How-
ever, computing a controlled invariant set is still extremely
challenging. For many important classes of systems finite
termination is not guaranteed and other stopping criteria and
relaxations are considered [4]. Moreover, the sets obtained
become more complex with each iteration, consequently
making solutions by this procedure intractable for high
dimensional systems.
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Attempts to overcome the difficulties and restrictions
of computing controlled invariant sets relied on solving
optimization problems, mostly linear programs, and using
approximation techniques. Unavoidably, these techniques
suffer from the efficiency-accuracy tradeoff, and the curse of
dimensionality [8], [12], [24]. Recently, in [15], the authors
presented an efficient method using semidefinite program-
ming. Other attempts utilize sampling-based approximations
[9] for linear sampled-data systems to keep the system within
a set over some small specified time horizon. They are able
to handle larger systems, but only provide invariance on finite
time intervals.

In some cases, it is possible to compute the maximal
controlled invariant set in finitely many steps [4], [13]. An
important class of systems that ensures finite termination are
discrete-time linear systems: if the system is controllable, and
the constraints on states and controls are given by a finite
union of hyper-rectangles, then the maximal control invariant
set is finitely determined, see [20], [23], [25]. For another
popular class of systems, namely the controllable discrete-
time linear systems with bounded perturbations, where the
state and control constraints are assumed to be polytopes, an
approach to compute robust controlled invariant sets is given
in [19].

In this paper we address the problem of computing a
controlled invariant subset of a convex and compact poly-
hedral set for the class of controllable, discrete-time lin-
ear systems. We propose a novel algorithm that computes
controlled invariant sets in only two moves: 1) it lifts the
set whose controlled invariant subset we wish to compute
to an hyper-rectangle in a higher dimensional space where
its Maximal Controlled Invariant Subset (MCIS) can be
computed in closed-form; 2) it projects this representation
back to the original domain, and therefore is free of many
of the numerical discrepancies or trade-offs of other state-of-
the-art methods. Although the proposed algorithm does not
compute the MCIS, it is nevertheless complete in the sense
that if the MCIS is non-empty it will compute a controlled
invariant set.

The paper is organized as follows, in Section II the
formal problem setup is presented, along with the basic
definitions and notations. Next, Section III illustrates our
method in detail, and provides proofs of correctness and
completeness. Finally, in Section IV we provide a number
of examples showing the computational efficiency of our
method that handles arbitrarily high dimensional systems,
before concluding our remarks in Section V.
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II. PROBLEM SETUP AND BASIC DEFINITIONS

In this section, the problem of computing a controlled
invariant subset D of a compact polyhedron D ⊂ Rn given
a linear discrete-time system Σ is formalized.

Problem 1: Consider a discrete-time linear system Σ de-
fined by (A,B):

xk+1 = Axk +Buk, (1)

where x0 ∈ D,uk ∈ R, A ∈ Rn×n, B ∈ Rn, and D ⊂ Rn is
a compact polyhedron:

D = {x ∈ Rn∣Gx ≤ f} , (2)

G ∈ Rk×n, f ∈ Rk. A set D ⊆ D is a controlled invariant
set for system Σ if:

x ∈ D ⇒ ∃u ∈ R ∶ Ax +Bu ∈ D.

Given system (1) and the set D (2), we wish to find a
controlled invariant subset of D for Σ. We call D the safe
set.

Next we define the controlled predecessor of a polyhedron
D ⊂ Rn under the system Σ, denoted by Pre(X):

Pre(D) = {x ∈ Rn∣∃u ∈ R ∶ Ax +Bu ∈ D} . (3)

Intuitively, Pre(D) is the set of all states x for which there
exists a control input u forcing them into D in one time-step.
It follows that for the polyhedron D, Pre(D) is given by:

Pre(D) = πRn (Q(D)) ,

where the auxiliary set Q(D) is:

Q(D) = {(x, u) ∈ Rn × R
»»»»»»»»
[GA GB] [x

u
] ≤ f} ,

i.e., the set of states x and control inputs u such that x is
in D in the next time-step, and πRn is the natural projection
from Rn × R to Rn mapping (x, u) ∈ Rn × R to x ∈ Rn.

To solve Problem 1 an iterative procedure was proposed
[1], [2], [7]:

{S0 = X

Sk+1 = Sk ∩ Pre(Sk)
, (4)

with the terminating condition Sk+1 = Sk. Procedure (4)
theoretically works for any discrete-time system, not just for
the class of linear systems and convex sets.

In this work, we make the following two assumptions on
the set D and the discrete-time linear system Σ as part of
the problem setup:

1) The set D ⊂ Rn is a compact polyhedron;
2) The system Σ, as presented in (1), is controllable.
In order to provide a clean and streamlined mathemat-

ical description of the proposed results we work with the
Brunovsky canonical form (see [6]) of (1). For any con-
trollable linear system (1), there exist matrices Φ ∈ Rn×n

and Ψ ∈ Rm×n, with Φ invertible, such that the sys-
tem defined by (ΦAΦ

−1 − ΦBΨ,ΦB) is in Brunovsky
normal form. In particular, with the change of coordi-
nates z = Φx⇔ Φ

−1
z = x, and the feedback transformation

u = −Ψx + v we obtain the equivalent system in Brunovsky
normal form:

zk+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 ⋯ 0
0 0 ⋱ ⋮
⋮ ⋱ 0
⋮ 0 1
0 0 ⋯ ⋯ 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

zk +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
⋮
0
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

vk = Aczk +Bcvk.

(5)
The safe set in the new coordinates, namely Dc, is of

course still a polyhedron in Rn,

Dc = {z ∈ Rn»»»»»GΦ
−1
z ≤ f} = {z ∈ Rn∣Gcz ≤ f} . (6)

In other words it is an intersection of halfspaces:

Gcz ≤ f ⇔ g
T
j z ≤ fj , j = 1,⋯, k,

where gTj is the j-th row of Gc and f = [f1 ⋯ fk]T .
Remark 1: In the remainder of the paper, we focus on

the case where we have constraints on the states but not
on the input. Our results hold in the exact same manner
if input constraints are enforced. In this case, we extend
the original state space by one dimension, thus obtaining
the state y = (x, u), and introduce a new unconstrained
input ν governing the evolution of the state u according to
uk+1 = νk.

III. CONTROLLED INVARIANCE IN TWO MOVES

In this section we propose our novel algorithm for com-
puting a controlled invariant set for a discrete-time linear
system. We begin by lifting set Dc into a higher dimensional
space, where a related MCIS can be computed in closed-
form. Then, by projecting the resulting set back to the
original space we obtain a controlled invariant subset of Dc.
Proofs on correctness and completeness are provided in this
section.

A. Lifting the safe set and the system

The first step is to lift the set Dc to a higher dimensional
space so as to represent it as a union of hyper-rectangles.
Towards this end, we introduce λ ∈ Rkn, and lift Dc ⊂ Rn

to a set D`
c ⊂ Rn+kn by the following construction:

{gjizi ≤ λji, i = 1,⋯, n

∑n
i=1 λji ≤ fj

, j = 1, . . . , k, (7)

where gji is the entry of Gc in its j-th row and i-th column,
and λ = [λ11 . . . λji . . . λkn] ∈ Rkn. Then the lifted set D`

c

is:
D
`
c = {x̂ = (z, λ) ∈ Rn+kn »»»»» Ĝ0x̂ ≤ f̂0} , (8)

where:

Ĝ0 = [ Ḡc −Ikn×kn
0k×n H

], Ḡc = [diag(g1) ⋯ diag(gk)]T ,

with diag(gj) a diagonal matrix with the elements of gj ,
H ∈ Rk×kn such that Hλ ≤ f ⇔ ∑i λji ≤ fj , j = 1, . . . , k,

and f̂0 = [0kn×1
f

]. Note that once we fix λ, (7) defines a

collection of hyper-rectangles by restricting zi to belong to
an interval. Hence, we can see D`

c as the union of all the
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hyper-rectangles defined by the coefficients λji satisfying the
second equation in (7).

Finally, we lift system (5) to Σ
`:

[z
λ
]
k+1

= [ Ac 0kn×kn
0n×n Ikn×kn

] [z
λ
]
k

+ [ Bc
0kn×1

] vk ⇔

x̂k+1 = Âx̂k + B̂vk, (9)

where x̂k ∈ Rn+kn and vk ∈ R. We fix λ to be constant
so that rectangles in (7) are preserved by the lifted system,
allowing us to compute the MCIS in this higher dimensional
space in closed-form.

Figure 1 illustrates the ideas of this subsection: the original
set, an octagon, is lifted to a higher dimensional space
and represented by a union of different hyper-rectangles
depending on the variable λ. For a fixed λ we have an
instantiation of the hyper-rectangles. By projecting all these
instantiations back to the original domain, one obtains the
octagon.

B. Proposed algorithm

The method we propose works with a system in the
form (9), and applies the well-known [1], [2], [4], [7]
iterative procedure (4), which is proven to yield the maximal
control invariant set upon termination. This is summarized
in Algorithm 1, which is based on the following high-level
idea:

• Given a controllable, discrete-time linear system Σ, and
a set Dc, lift Dc ⊂ Rn into the set D`

c ⊂ Rn+kn (8),
and system Σ to system Σ

` (9).
• Apply procedure (4) (we prove finite termination in the

next subsection).
• Project the set resulting from procedure (4) back to the

original vector space.
• The resulting set is controlled invariant.

In the next subsection we prove that procedure (4) termi-
nates in exactly n steps, where n is the dimension of the
original system.

Fig. 1: Illustration of domain lifting. Octagon is the original
set Dc. Transparent hyper-rectangle is an instantiation of the
hyper-rectangles whose union represents the lifted set D`

c.
Gradient cube is the MCIS in the higher dimension. Light
grey rectangle is the controlled invariant set obtained after
projection. Dark grey polygon is the exact MCIS.

Algorithm 1: Computation of a controlled invariant
subset of a set D.
Data: A set Dc = {z ∈ Rn∣Gcz ≤ f}, and a

controllable pair (A,B).
Result: A controlled invariant subset of Dc.
Input: Gc, f, A,B
Define:
λ ∶= [λ11 . . . λ1n . . . λk1 . . . λkn] ∈ Rkn ,
s.t. ∑n

i=1 λji ≤ fj , j = 1,⋯, k.

D
`
c = {x̂ = (z, λ) ∈ Rn+kn »»»»» Ĝ0x̂ ≤ f̂0} .

Init: S0 ∶= D
`
c

while Sk+1 ≠ Sk do
Sk+1 ∶= Sk ∩ Pre(Sk)

end while
D ∶= πRn(Sk)

Return D

C. Finite termination
The result of this subsection was motivated by the similar

results in [20], [23], [25] in which finite termination is
guaranteed. However, in the higher dimensional space where
procedure (4) is applied, the system Σ

` in (9) is not control-
lable, although controllability is one of the assumptions upon
which the aforementioned results rely.

The following Theorem constitutes our main result. In
this theorem we make three claims: 1) finite termination, 2)
correctness, and 3) completeness of Algorithm 1. While 1)
is proven in this subsection, we prove 2) and 3) in separate
subsequent theorems.

Theorem 3.1: For any discrete-time linear system (5), and
a safe set Dc, for which assumptions 1) and 2) hold, a
controlled invariant set D ⊆ Dc is provided by:

D = πRn(Sn), (10)

where Sn is the MCIS of D`
c ⊂ Rn+kn for Σ

`, and whose
closed-form expression is given in (12).

Proof: Initialize Algorithm 1 with S0 = D
`
c. In order

to compute Pre(S0) using (3), the auxiliary operator Q(S0)
is given by:

Q(S0) = {(x̂, v) ∈ Rn+kn+1
»»»»»»»»
[Ĝ0Â Ĝ0B̂] [x̂

v
] ≤ f̂0}

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(z, λ, v) ∈ Rn+kn+1

»»»»»»»»»»»»
[ḠcAc −I ḠcBc

0 H 0
]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

z
λ
v

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
≤ f̂0

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

The inequalities of Q(S0) can be written as:
gjizi+1 − λji ≤ 0, i = 1, . . . , n − 1,

gjnv − λjn ≤ 0.

To obtain Pre(S0) = πRn+kn(Q(S0)) we eliminate the
variable v. Towards this end, we define the following sets:

P1 = {p∣gp = gjn > 0}
T1 = {t∣gt = gjn < 0}
R1 = {r∣gr = gjn = 0} .
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Using now the Fourier-Motzkin Elimination (FME) method
[17] we obtain:

⋀
p∈P1

⋀
t∈T1

(gtλp − gpλt ≤ 0) . (11)

By defining a matrix Γ1 = [0 Γ
λ
1] such that Γ1x̂ ≤ 0 is

equivalent to (11), we can write Pre(S0) as:

Pre(S0) = {x̂ ∈ Rn+kn
»»»»»»»»»
[(Ĝ0Â)

R1

Γ1

] x̂ ≤ [0
0
]} ,

where the subscript R1 denotes that we keep only the rows
with index belonging to the set R1. Therefore, at the end of
the first step we compute S1 = S0 ∩ Pre(S0):

S1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̂ ∈ Rn+kn

»»»»»»»»»»»»»

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĝ0

(Ĝ0Â)
R1

Γ1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x̂ ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̂0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

At each step i ∈ Z+, all the constraints imposed by
the projection of Q(Si) to obtain Pre(Si) are realized by
the matrix Γi. Notice that for each i, the constraints Γi−1
are included in Γi. Utilizing this fact, and applying this
procedure iteratively, at the n-th step we obtain:

Sn =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

x̂ ∈ Rn+kn

»»»»»»»»»»»»»»»»»»»»

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ĝ0

Ĝ1

⋮
Ĝn
Γn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x̂ ≤

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f̂0
0
⋮
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

, (12)

where Ĝi = [((((Ĝ0Â)R1
)Â)R2

. . . Â)
Ri

], i = 1, . . . , n

and Γn = [0 Γ
λ
n] such that Γnx̂ ≤ 0 is equivalent to:

⋀
p∈Pn

⋀
t∈Tn

(gtλp − gpλt ≤ 0) , (13)

where index sets Pn, Tn and Rn are:

Pn = {p∣gp = gjl > 0, l = n, . . . , 1, j = 1, . . . , k}
Tn = {t∣gt = gjl < 0, l = n, . . . , 1, j = 1, . . . , k}
Rn = {r∣gr = gjl = 0, l = n, . . . , 1, j = 1, . . . , k} .

If we were to perform one more step, the new constraints
to be added depend on the matrix Ĝn multiplied by the
dynamics. At each step i, we keep only the rows whose
index belongs to Ri. Notice that ĜnB̂ = 0 and hence
no new constraints involving v are introduced. Moreover,
ĜnÂ = Ĝn, and therefore the equality Ĝn+1 = Ĝn holds.
Consequently, no more constraints are added after the n-th
step and it follows immediately that Sn+1 = Sn, proving that
procedure (4) terminates in exactly n steps. The set Sn is
therefore the MCIS of D`

c. By projecting Sn ⊆ Rn+kn back
to Rn, we obtain:

D = πRn(Sn).

Remark 2: Although we only discuss single-input sys-
tems, it is easy to see that the same argument works
for controllable multiple-input systems since they can be
decomposed to several decoupled single-input systems.

D. Proof of correctness
In this subsection we prove that the set computed by

Algorithm 1 is indeed a controlled invariant set.
Theorem 3.2: For any discrete-time linear system and set

D that satisfy assumptions 1) and 2), if Algorithm 1 returns
a non-empty set D, then D is a controlled invariant subset
of D for Σ.

Proof: For any x ∈ D, there exists a x̂ ∈ Sn such that
πRn(x̂) = x. Since Sn is controlled invariant, it follows that
Âx̂+B̂v ∈ Sn. Consequently, πRn(x̂) ∈ D. The proof is now
finished by noting that Ax +Bv = πRn(Âx̂ + B̂v) ∈ D.

E. Proof of Completeness
Here we prove that if the MCIS of a compact polyhedron

D is non-empty, then Algorithm 1 will always find a non-
empty controlled invariant subset of D.

Theorem 3.3: For any discrete-time linear system and set
D that satisfy assumptions 1) and 2), if the MCIS of D
is non-empty, then Algorithm 1 returns a non-empty set D
which is a controlled invariant subset of D.

Proof: Due to space limitations, we only provide a
sketch of the proof.

For a system Σ given by (1) assume that D̃ is the non-
empty MCIS of a compact, convex set D ⊂ Rn. Then there
exists a stationary control law ξ(x) for every x ∈ D̃ such
that Ax+Bξ(x) ∈ D̃ [2, Cor.1]. Now let K be the set-valued
function that maps a point x ∈ D̃ to the set of all admissible
control inputs u such that Ax +Bu ∈ D̃. Formally:

K(x) = {{u ∈ R∣Ax +Bu ∈ D̃} , x ∈ D̃
∅, x ∉ D̃

. (14)

Our goal is to prove the set D̃ admits a fixed point with
respect to Ax + Bξ(x). Towards this we use the following
two results from the literature:

Theorem 3.4 (Thm. 3.2 [16]): If A is a paracompact
space, B a Banach space and h ∶ A→ 2

B a lower semi-
continuous mapping with nonempty closed convex values,
then h admits a continuous single-valued selection.

Proposition 3.5 (Prop. 3.8 [11]): If h is a C-convex map-
ping, and efficient mapping at a point x0 of its domain, then
h is also lower semicontinuous at x0.

The following can be proven in a straightforward manner:
(1) K is closed convex valued, (2) K is C-convex (Sec. 2
[11]), and (3) K is efficient (Def. 3.5 [11]).

Consequently, by 2), 3) and [11, Prop. 3.8] K is a lower
semicontinuous mapping. Looking at [16, Thm. 3.2], the
space A = D̃ ⊆ Rn is paracompact since every metric
space is paracompact [22], the space B = R, i.e., the one-
dimensional Eucledean space, is a Banach space, and by 1) K
has closed convex values. Therefore, K admits a continuous
singled-valued selection, κ ∶ D̃ → R.

As a result, one can now write the system as
Ax +Bu = f(x, u) = f(x, κ(x)), and f is now continuous
with respect to x. By Brouwer’s fixed-point theorem [5], the
compact and convex set D̃ has a fixed-point x̃ with respect
to the continuous mapping f .

If we write {x̃} ⊂ D̃ as a “rectangle” in Rn, namely
Drec = {x ∈ Rn∣x̃i ≤ xi ≤ x̃i, i = 1, . . . , n}, transform it
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to the Brunovsky coordinates, and then lift it from Rn to
Rn+kn, we obtain a non-empty set Xrec which is controlled
invariant in Rn+kn. Thus, there exists a non-empty MCIS
X̃ ⊂ Rn+kn, since Xrec ⊆ X̃ , which in turn implies
existence of a point x̃0 ∈ X̃ , and a control sequence
ṽ(x̃0) = {ṽ0(x̃0), ṽ1(x̃1), . . . }, such that the trajectory
starting at x̃0 under ṽ(x̃0) is still in X̃ after n steps.
This implies X̃ ⊆ Sn ⇒ Sn ≠ ∅. Finally, by virtue of (10):
D = πRn(Sn) ≠ ∅, concluding the proof.

IV. ILLUSTRATIVE EXAMPLES AND COMPUTATIONAL
EVALUATION

We begin this section by presenting two examples, one in
R2 with constrainted input, and one in R3 with unconstrained
input, to illustrate how our approach can handle systems
with peculiarly shaped convex domains. Later in this section,
we perform a computational evaluation showing that this
approach can handle larger systems.

Example 1: Consider the following system in R2:

xk+1 = [1.5 1
0 1

]xk + [ 0.5
0.25

]uk,

D = {x ∈ R2∣Gx ≤ f}, with G and f such that D is the
intersection of 6 halfspaces in R2, u ∈ [−2, 2] (Fig. 2a), and
u ∈ [−1, 1] (Fig. 2b).

In Figure 2a, the union of all sets is D, the union of
white and light gray sets is the MCIS of D, the result of
Algorithm 1, D, is in white, and the set difference between
the MCIS and D is in light gray. In Figure 2b, one can see
how both controlled invariant sets (MCIS and D) shrink as
the constraints on control become tighter.

Example 2: Consider the following system in R3:

xk+1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 −2
3 −4 5
−6 7 8

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
xk +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1
2
4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
uk,

D = {x ∈ R3∣Gx ≤ f}, with G and f such that D is the
intersection of 12 halfspaces in R3, and u ∈ R.

In Figure 2c, using again the same color notation for sets,
D is shown. One can see in detail, in Figures 2d, 2e, and
2f, how the MCIS of D (union of white and light gray sets)
compares with the result of Algorithm 1, D (white), using
slices along each axis.

In both previous toy examples, the point was to show
how our approach handles cases with peculiar polyhedra.
However this is not the highlight of this approach. Contrary
to other approaches, the algorithm in this paper is able to
handle higher dimensional systems as well.

Remark 3: Note that in terms of performance of Al-
gorithm 1 we deal only with the single-input case. This
performance generalizes to the multiple-input case, as it is
measured in terms of the maximum controllability index
µ of a system. A controllable system with m inputs can
be decomposed to m single-input decoupled systems. The
largest of them has dimension µ, which dominates in terms
of the computational cost.

(a) (b)

(c) (d)

(e) (f)

Fig. 2: (a) Sets of Example 1 with u ∈ [−2, 2]. (b) Sets of
Example 1with u ∈ [−1, 1]. (c) Sets of Example 2. (d) 2D
slice of (c) in z-axis. (e) 2D slice of (c) in x-axis (e) 2D
slice of (c) in y-axis
Legend: Original set D (blue); Exact MCIS of D (light gray);
Controlled invariant set D from Algorithm 1 (white).

Consequently, one computes a controlled invariant set of
an arbitrarily high dimensional system with n states, m
inputs, and maximum controllability index µ by computing in
parallel controlled invariant sets of m decoupled subsystems.
This holds since once we lift the set, it becomes the product
of hyper-rectangles and thus the lifted set also decomposes.
Simulations have shown that this method is computationally
not significantly more expensive than having a single system
of dimension µ.

Therefore, in Table I we present for reference the mean ex-
ecution times for systems with dimensions n = 2 to n = 10,
obtained over 20 different trials each with a different ran-
domly generated compact polyhedron with 2n constraints.
Since it is equivalent to work with a system in Brunovsky
normal form, for our simulations we assumed that each
system is in this form. Bringing any system to this form
is computationally cheap compared to the obtaining a con-
trolled invariant set, and hence does not effectively increase
the reported times.

As a benchmark, we tried to compute the MCIS using the
invariantSet() function of the Multi-Parametric Toolbox
(MPT) [10] for the same systems. The corresponding times
are reported in Table I. Note that the reported times for
MPT involve only 5 iterations of the approach used. This
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TABLE I: Mean execution times of Algorithm 1 and MPT3
for an n-dimensional system and a randomly generated
polyhedron with 2n constraints. NA indicates aborting the
simulation if not concluded in 4 hours.

n = 2 n = 3 n = 4 n = 5 n = 6 n = 7 n = 8 n = 9 n = 10

Algorithm 1 0.05 0.19 2.06 9.24 42.37 73.47 332.29 1942 ∼ 15000

MPT
5 iterations 0.16 0.30 0.93 24.27 1384 NA NA NA NA

means that for n > 3, in the vast majority of cases, the
computation did not converge and the resulting sets are not
actually controlled invariant. More specifically, notice how
quickly the computational time of MPT3 explodes, and in
particular for n > 6 the iterations were not concluded after
four hours and the simulation was thus aborted.

Implementing the projection from Rn+kn back to Rn, we
exploit the structure of the MCIS computed in closed-form,
using a technique inspired by [21]. The authors there, pick at
each FME step the variable that yields the least growth, i.e.,
number of new inequalities introduced, and do not allow the
system of inequalities to grow beyond the original size. If it
does, they approximate the projection. However we utilized
exact projection instead of approximating it, and also allowed
the system to grow slightly beyond the original size.

For reference1, all the simulations were conducted with
an iMac (Late 2012), with 4 cores @ 3.4 GHz Intel Core i7
Processor, and 32 GB 1600 MHz DDR3 RAM.

V. CONCLUSION

In this paper, we presented a novel algorithm for com-
puting invariant sets of discrete-time linear systems in two
moves: 1) we lift the problem to a higher dimensional space
where the controlled invariant set is computed in closed-
form; 2) we project the resulting set back to the original
domain. This algorithm, which does not rely on iterative
computations, has advantages over other methods that trade
off computational efficiency and accuracy. First, it is com-
plete as it is guaranteed to compute a non-empty controlled
invariant set if the MCIS is not empty. Second, although it is
not guaranteed to compute the MCIS, it computes a set that
is guaranteed to be controlled invariant. Another advantage
of the proposed method is the ability to handle larger systems
measured in terms of their controllability index. Finally, we
believe the performance of the proposed method can be
further improved by exploiting the specific structure of the
MCIS computed in closed-form in the higher dimensional
space, which is the focus of our current research.
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